Dropout Rates of Massive Open Online Courses: Behavioural Patterns

نویسندگان

  • D. F. O. Onah
  • J. Sinclair
  • R. Boyatt
چکیده

Massive open online courses (MOOCs) have received wide publicity and many institutions have invested considerable effort in developing, promoting and delivering such courses. However, there are still many unresolved questions relating to MOOCs and their effectiveness. One of the major recurring issues raised in both academic literature and the popular press is the consistently high dropout rate of MOOC learners. Although many thousands of participants enrol on these courses, the completion rate for most courses is below 13%. This paper investigates MOOC attrition from several different perspectives. Firstly, we review existing literature relating to MOOC dropout rates, bringing together existing findings on completion rates and analyses of several specific courses, which identify factors that correlate to likelihood of dropout. We provide a meta-analysis of the basic figures on overall dropout rates previously collected to identify relationships between course factors and dropout rates. In addition, the literature is reviewed from a qualitative perspective drawing together findings on the reasons for dropout and methods suggested for resolving or reducing the dropout rate. Secondly, using themes emerging from the initial investigation, we provide a preliminary analysis of data gathered from a Computing MOOC run by the University of Warwick, UK and presented using a Moodle platform. Different aspects of students’ demographic data are examined to see if relationships to persistence exist. An important feature of this course is that it has been run in two different parallel modes (“traditional” MOOC mode with peer support, and “supported” mode with real time, tutored programming labs). This allows direct comparison between the dropout figures for the two different modes. Qualitative information from student evaluations is also considered. Finally, we discuss our findings relating MOOC dropout rates, considering what factors are within the control of a MOOC provider and suggesting the most promising avenues for improvement. Our results indicate that many participants who may be classed as dropouts (for example, because they do not complete the necessary components to gain a certificate) are still participating in the course in their own preferred way (either at a slower pace or with selective engagement). This suggests that the structure of “a course” may not be helpful to all participants and supporting different patterns of engagement and presentation of material may be beneficial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Peer Influence on Attrition in Massively Open Online Courses

In this work, we investigate the role of relational bonds in keeping students engaged in online courses. Specifically, we quantify the manner in which students who demonstrate similar behavior patterns influence each other’s commitment to the course through their interaction with them either explicitly or implicitly. To this end, we design five alternative operationalizations of relationship bo...

متن کامل

Massive Open Online Courses Temporal Profiling for Dropout Prediction

Massive Open Online Courses (MOOCs) are attracting the attention of people all over the world. Regardless the platform, numbers of registrants for online courses are impressive but in the same time, completion rates are disappointing. Understanding the mechanisms of dropping out based on the learner profile arises as a crucial task in MOOCs, since it will allow intervening at the right moment i...

متن کامل

Exploring the Effect of Student Confusion in Massive Open Online Courses

Although thousands of students enroll in Massive Open Online Courses (MOOCs) for learning and self-improvement, many get confused, harming learning and increasing dropout rates. In this paper, we quantify these effects in two large MOOCs. We first describe how we automatically estimate students’ confusion by looking at their clicking behavior on course content and participation in the course di...

متن کامل

“Turn on, Tune in, Drop out”: Anticipating student dropouts in Massive Open Online Courses

In this paper, we explore student dropout behavior in Massive Open Online Courses(MOOC). We use as a case study a recent Coursera class from which we develop a survival model that allows us to measure the influence of factors extracted from that data on student dropout rate. Specifically we explore factors related to student behavior and social positioning within discussion forums using standar...

متن کامل

The Potentiality of Dynamic Assessment in Massive Open Online Courses (MOOCs): The Case of Listening Comprehension MOOCs

Massive Open Online Courses (MOOCs) as a new shaking educational development provide the scene for achieving social inclusion and dissemination of knowledge. Anyhow, facilitating network learning experiences through creating an adaptive learning environment can pave the way for this open and energetic way to learning. The present study aimed to explore the possible role of Dynamic Assessment (D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014